Skilled in the Art of Being ldle:
Reducing Energy Waste in Networked Systems

Sergiu Nedevschif Jaideep Chandrashekar Junda Lid * Bruce Nordmah
Sylvia Ratnasamy Nina Taff

Abstract 1 Introduction
Networked end-systems such as desktops and set-to:?:)ecent years have seen r1sing concern over the energy
) . onsumption of our computing infrastructure. A recent
boxes are often left powered-on, but idle, leading to d) hat in th |
wasted energy consumption. An alternative would be forstu y [19] estimates that, in the U.S. alone, energy con-
’ sumption for networked systems approaches 150 TWh,

these idle systems to enter low-power sleep modes. Unv'vith an associated cost of around 15 billion dollars.

fortunately, today, a sleeping system sees degraded funﬁ(bout 75% of this consumption can be attributed to

tlona!'lty: f|rst., a sleeping glewce loses its net_/vork Iores'[mmes and enterprises, and the remaining 25% to net-
ence” which is problematic to users and applications tha; S .
works and data centers. Our focus in this paper is on re-

expect to maintain accessto a r_emote machine and, Seahcing the 75% consumed in homes and enterprises. To
ond, sleeping can prevent running tasks scheduled dur-

ing times of low utilization é.g.,network backups). Var- put this in perspective, this energy (112 TWh) is roughly

. . equivalent to the yearly output of 6 nuclear plants [14].
ious solutions to these problems have been proposed ov . ! :
. . X f equal concern is that this consumption has grown —
the years including wake-on-lan (WoL) mechanisms that . :
and continues to grow — at a rapid pace.

wake hosts when specific packets arrive, and the use of a

)) : In response to these energy concerns, computer ven-
proxy that handles idle-time traffic on behalf of a sleep- 22
! ; . dors have developed sophisticated power management
ing host. As of yet, however, an in-depth evaluation of : : : :

. . . chniques that offer various options by which to reduce
the potential for energy savings, and the effectiveness o . :
computer power consumption. Broadly, these techniques
Al build on hardware support faleep(S-states), and

this, in this paper, we collect data directly from 250 en- .
: . . . requency/voltage scaling [21] (processor P-states [4]).
terprise users on their end-host machines capturing net- o .
he former is intended to reduce power consumption

work traffic patterns and user presence indicators. With, = . . .
) L . during idle times, by powering down sub-components
this data, we answer several questions: what is the pao-

. : . . .~ 1o different extents, while the latter reduces power con-
tential value of proxying or using magic packets? which

protocols and applications require proxying? how CC)m_sumptlon while active, by lowering processor operating

prehensive does proxying need to be for energy benefitfrequency and voltage during active periods of low sys-

to be compelling? and so on tem utiization.
' ' Of these, sleep modes offer the greatest reduction in

We find that, although there is indeed much potentiakhe power draw of machines that adée. For example, a
for energy savings, trivial approaches are not effectivetypical sleeping desktop draws no more than 5W [2], as
We also find that achieving substantial savings requires @ompared to at least 50W [2] when on, but idle — an order
careful consideration of the tradeoffs between the proxyof magnitude reduction. It is thus unfortunate that sleep
complexity and the idle-time functionality available to modes are not taken advantage of to anywhere close to
users, and that these tradeoffs vary with user environtheir fullest potential. Surveys of office buildings have
ment. Based on our findings, we propose and evaluatghown that about two thirds of desktops are fully on at
a proxy architecture that exposes a minimal set of APIshight [20], with only 4% asleep. Our own measurements
to support different forms of idle-time behavior. (Section 3) reveal that enterprise desktops remain idle for

an average of 12 hours/day — time that could, in theory,
be spent mostly sleeping.

“International Computer Science Institute Relative to an idle machine, the only loss of functional-
fIntel Research ity to a sleeping machine is twofold. First, since a sleep-
fUniversity of California, Berkeley ing computer cannot receive or transmit network mes-

$Lawrence Berkeley National Laboratories sages, it effectively loses its “presence” on the network.

This can lead to broken connections and sessions whepotential savings or can we hope that WoL suffices to
the machine resumes.(.,a sleeping machine does not maintain network presence while still sleeping usefully?

renew its DHCP lease and hence loses its IP addresg),. \ it network traffic do idle machines see? Un-
and also prevents remote access to a sleeping computey,

) : o . . érstanding this will shed light on how this idle-time traf-
This loss of functionality is problematic in an increas- 9 9

. fic might be dealt with and, consequently, what protocols
ingly networked world. For example, a user at home g y 9 Y. b

might want to access files on his desktop at work, anand applications might trigger wake-up packets and/or

. : -_require proxying. On the face of it, it would seem like
on-the-road user might want to download files from hISan idle machine ought not to be engaged in much useful

home machine to his handheld, system admmstratorglctivity and hence, ideally, one might hope that a small

might desire access to enterprise machines for SOftwarﬁumber of wake-up events are required and/or that a rel-
updates, security checks and so forth. In fact, some en-

terprises,require that users not power off their desk- atively smgll set of protocols must be proxied to realize
tops to ensure administrators can access machines at gﬁeful savings.
times [6]. The second problematic scenario is when user®3: What is the design space for a proxy? In general,
or administrators deliberately want to schedule tasks téhe space appears large. Different proxy implementations
run during idle times -e.g.,network backups that run might vary in the complexity they undertake in terms of
at night, critical software updates, and so on. Unfortu-what work is handled by the proxys.waking the ma-
nately, these drawbacks cause users to forego the use ¢ffine to do so. In some cases, one might opt for a rela-
sleep modes leading to wasteful energy consumption. tively simple proxy that (for example) only responds to
The above observations are not new, having been resertain protocols such as ARP (specified by the DMTF
peatedly articulated (also by some of the authors) in bottASF2.0 standard[1]) and NetBios. But more complex
the technical literature and popular press [13, 16, 19, 10proxies are also conceivable. For example, a proxy might
7, 15]. Likewise, there have been two long-standing protake on application-specific processing such as initiat-
posals on how to tackle the problem. The first is to gen-ing/completing BitTorrent downloads during idle times
eralize the old technology of Wake-on-LAN (WoL), an and so forth. Likewise, there are many conceivable de-
Ethernet computer networking standard that allows a maployment options — a proxy might run at a network mid-
chine to be turned on or woken up remotely by a speciatlebox €.g.,firewall, NAT, etc), at a separate machine
“magic packet’. A second, more heavyweight, proposalon each subnet, or even at individual machireg.(on
has been to use @oxythat handles idle-time traffic on its NIC, on a motherboard controller, or on a USB-
behalf of a sleeping host(s), waking the sleeping hosgttached lightweight microengine). Given this breadth
when appropriate. Thus both problem (wasted energpf options, we are interested in whether one can iden-
consumption by idle computers) and proposed solutionsify a minimal proxy architecture that exposes a set of
(wake-up packets and/or proxies for sleeping machinesppen APIs that would accommodate a spectrum of design
have existed for a while now. In fact, the technology for choices and deployment models. Doing so appears im-
WoL has been implemented and deployed although ngportant because a proxy potentially interacts with a diver-
widely used (we explore possible causes for this lateisity of system components and even vendors (hardware
in the paper). However the recent focus on energy conpower management, operating systems, higher-layer ap-
sumption has led to renewed interest in the topic withplications, network switches, NICstc) and hence iden-
calls for research [7, 13], calls for standardization [12],tifying a core set of open APIs would allow different ven-
and even some commercial prototypes [15]. As yet how-dors to co-exist and yet innovate independently. For ex-
ever, there has been little systematic and in-depth evalusgmple, an application developer should be able to define
tion of the problem or its solutions — what savings mightthe manner in which his application interacts with the
such solutions enable? what is the broader design spageoxy with no concern for whether the proxy is deployed
for solutions? what, if any, might be the role of standard-at a firewall, a separate machine or a NIC.

ization? are these the right long-term solutioa&? Q4: What implications does proxying have for future

In this baper, we explore thes_e questions by ,SIUdyin_%rotocol and system design? The need for a proxy
user behavior and network traffic in an enterprise envi ices largely because network protocols and applica-
ronment. Specifically, we focus on answering the follow-

: . tions were never designed with energy efficiency in mind
Ing questions: nor to usefully exploit, or even co-exist with, power man-
Q1: Is the problem worth solving? Just how much agement in modern PCs and operating systems. While
energy is squandered due to poor computer sleepingroxies offer a pragmatic approach to dealing with this
habits? This will tell us the potential energy savings thesemismatch for currently deployed protocols and software,
solutions stand to enable and hence the complexity thegne might also take a longer-term view of the problem
warrant. Also, is proxying really needed to realize theseand ask how we might redesign protocols, applications

or even hardware power management to eventually obvi-
ate the need for such proxying altogether.
In this paper, we study the network-related behavior of 759 |

100%

. . . . Ooff
250 users and machines in enterprise and home environ BSleep
ments, and evaluate each of the above questions in Sec ~ 50% 1 EOn
tions 3 to 6 respectively. o5 | Widle
2 Measurement data and methodology

.o 0%

We collected network and user-level activity traces from 1 83 5 7 9 11 138 15 17 19 21 23
approximately 250 client machines belonging to Intel Sorted users

corporation employees, for a period of approximately . e . .
5 weeks. The machines, running Windows XP, incIudeF'g_ure 1: _Dlstr|but|on of the split among off, idle and
both desktops and notebooks—approximately 10% ar@ctive periods across users.

desktops and the rest, notebooks. , , .
Our trace collection software was run at the individ- These states vary in their characteristics—whether the

ual end-hosts themselves and hence, in the case of notePU is powered off, how much memory state is lost,
books, trace collection continued uninterrupted as thévhich buses are clocked and so on. However, common
user moved betweeenterpriseand home enabling us 0 all states, is that the CPU stops executing instructions
to analyze traffic from both of these environments. and hence the computer appears to be powered down.

Our packet traces were collected using Windump. ToThus although these sleep states conserve energy, the un-
capture user activity, we developed an application thaflesirable side-effect is that a sleeping computer effec-
sampled a number of user activity indicators at one sectively “falls off” the network—making it unavailable for
ond intervals. The user activity indicators we collectedremote access and unable to perform routine tasks that
included keyboard activity and mouse movements andnay have been scheduled at particular times. This leads
clicks. Noticeable gaps in the traces occur when the hoghany users to disable power management altogether and
was turned off, put to sleep, or in hibernation. Thus eactinstead leave machines running 24/7. For example, stud-
end-host is associated with a trace of its network and usdfs have shown that approximately 60% of the PCs in of-
activity. We then used Bo [9] to reassemble connection- fice buildings remain powered on overnight and almost
level information from each packet-level trace. all of these have power management disabled [20].

Thus, for the 5 week duration of our measurement To more carefully quantify the amount of wasted en-
study, we have the following information for each end- ergy (and hence potential savings), we analyzed the trace

host: data collected at our enterprise machines. To determine
e a packet-level (pcap) trace capturing packet headerghether a machine has a locally present and active user,
for the entire duration we examine the recorded mouse and keyboard activity

e per-second indicators of user presence at the machinér the machine: if no such activity is recorded for 15

e the set of all connections—incoming and outgoing—mMinutes, we say that the machinédte. We use 15 min-

as reconstructed by from the packet traces utes because it is the default timeout recommended by
The result is a 500GB repository of trace data. To pro-EnergyStar for putting machines to sleep, and because it

cess this, we developed a custom tool that extends theepresents a simple (and fairly liberal) approximation for

publicly available WRESHARK [3] network protocolan- the notion ofidle-ness for which a standard definition

alyzer with different function callbacks implementing does not exist. We maintain this definition of idle-ness

the additional processing required for our study. for the remainder of the paper.

3 Low Power Proxying: Potential and Need At any pointin jtime, we c!assify a machin.e as beingin

one of four possible states: (a) on, and actively used, we

In this section, we estimate the energy wasted by homeg|| this active (b) on, but not usedgle; (c) in asleep

and office computers that remain powered on even whegtate such as S3 or S4, and (d) powered dafinNote

idle, i.e., even when there is no human interacting withthat this notion of “idle” refers here to theser and not

the computer. Subsequently, we investigate whether vernyhe machine, being inactive.

simple approaches -e.g.,the computer is woken up to | Figure 1 we present this data for our enterprise desk-

process every network packet and then returns to sleegps. We focus here on the desktops since this represents

immediately after—would suffice in allowing hosts to the potential energy savings an enterprise could garner.

sleep more while preserving their network “presence”. Because the bulk of our traces come from mobile users,

How much energy is squandered by not sleeping? we have a limited number of desktops. We see that the
Virtually all modern computers support advanced sleefdraction of time when these machines are active is quite

states, S1 - S4 as defined in the ACPI specification [5]low, falling below 10% on average. Moreover, the aver-

O Idlg 60 B Home
H Active

©

50 O Office

w
L

Padety/seaond
o
% of idletime

. CHNmTLeo~®oQ N RN RTQ g
Home Office ALL °S
Usage environment Second-long bins for inter-packet gaps
Figure 2: Average number of directed and broad-Figure 3: Histogram of the fraction of the idle time made
cast/multicast packets received on average by a networky of inter-packet gaps of different size.
host at home and in the office.

) i i N per second is roughly 3, while at home it is roughly 1.
age fraction (_)f yme when machlnes are idle is high —rpis ingicates a fairly constant level of background chat-
abou_t 50%. Similar to other studies, we note that a smally, o the network, independent of the user’s activity. Be-
fraction of our delsk.top.s (only 5 out 24) use sleep mOdecause this number is an average, we need to understand
at all. Ov_eraII, this |nd|cate_s that there is a tremendou% these packets occur in bursts or not. If the packets are
opportunity for energy savings on enterprise desktopsy, gy most of the time, then there may still be opportu-
The opportunity on our corporate laptops exists t00, buiies 't sleep as the host can be woken up to service a
IS mod_erate because we fOU”P' that our laptop USETS WEI, st of packets and then be put to sleep for some reason-
more likely to emp"?y aggressive sleeping Comclguratlons‘able period of time (certainly more than a few seconds).
that come pre-configured on laptops. If these packets occur fairly evenly spaced, then it is not
~ While the sample of the desktop machines in our expery,orth going to sleep unless the time to transition in and
|mer_1ts is small, the results are consistent W'th_eX'SF'ngout of sleep is very small (on the order of 1 to 3 seconds).
studies [20]. We therefore use these measured idle tln_1es-|-0 quantify the burstiness level of our traffic, we group
Fo extrapolate the_engrgy that could be.saved by Sleep'nﬁﬁter-packet gaps into second-long bing.(0-1s, 1-2s,
msteaq _of remainingidle. _There are estimated to bg ab‘?‘@tc). We then compute the sum of the inter-packet gaps
170 million desktop PCs in the US (data summarized iiy gach of these bins, and finally compute the fraction
[23]). ASS””“”Q an 80W power consumptlon of anidle ¢ 1o jdle time represented by each bin. We present
PC, and assuming these machines are idle for 50% of thg,aqe resuits in Figure 3, for both home and office envi-
time, this amounts to roughly 60 TWhiyear of wasted .,y ments. In the office, over 90% of the time, the IPG
electricity (or 6 billion dollars, at US$0.10 per kWh). g ass than 2 seconds. Although the distribution is more
Is low-power proxying needed? Before developing uniformly spread for the home environment, we still see
new solutions to reducing host idle times, we investigatehat roughly 70% of the time, the IPG is less than 20
whether very simple approaches like waking up for ev-seconds. Overall we observe that: (a) neither of the en-
ery packet can deliver these savings while maintainingzironments enjoys many long periods of quiet time; (b)
full network presence. In this approach, which we denotewe find this distribution to be very different for the two
(WoP — wake on packet), the machine is woken up forenvironments. In home networks the distribution has a
every packet it needs to receive (directed or broadcast)nuch heavier tail, the traffic is burstier, and we do see
and put back to sleep after the packet is served. The petenger periods of quiet time.
formance of such an approach depends on whether theWe now translate these observations into actual sleep
inter-packet gap (IPG) is smaller or comparable to thetime. In order to perform this computation, we must con-
time it takes to transition in and out of sleep. If it isn’t sider a representative value for the time interval it takes
then there is no gain over simply leaving the machine inthe host to wake up, process the packet and then go to
an idle state. sleep again—we call this the transition time, denated

To examine the traffic during idle times, we used bothToday, typical machines take 3 — 8 seconds to enter S3
our desktop and laptop machines. We consider both typesleep, and 3 — 5 seconds to fully resume from S3, as mea-
(even though we're primarily interested in desktops) be-sured in a recent study [6]. Therefore, it is reasonable to
cause this gives us a significantly larger set of samplesassume an average transition titgef 10s.

We separate the idle time traffic into two categories, of- When a packet arrives, the machine is woken up to
fice and home. In Figure 2 we plot the average number oferve the packet. After processing a packet, the machine
packets/sec for idle traffic both in the office and at home.only goes to sleep again if it knows the next packet will
In the office environment, the average number of packetsot arrive before it transitions to sleep. This idealizesd te

100%

@ 1
£
[}
= 75%
2 075 ’
e OUcast
g 50% B Mcast
g 0.5 B Beast
E 25%
B 0.25
g 055 | |
) Home ‘ Office Home ‘ Office
o]

0

o ” 0 60 80 100 INCOMING OUTGOING
Sorted users Figure 5: Composition of incoming and outgoing traf-

Figure 4: The fraction of idle time users can sleep if theyfic during idle times, for home and office environments,
wake up for every packet, across different environmentdased on communication paradigms
for a transition time, = 10seconds.
pending on the proxy deployment model) its proxy. At

thus assumes that the host knows the future incominghis point, the proxy must know what to do with this in-
packet stream and captures the best the machine coutdrcepted traffic; broadly, the proxy must choose between
do in terms of energy savings. three reactions: a) ignore/drop the packet; b) respond to

Figure 4 presents the fraction of idle time for which the packet on behalf of the machine; or c) wake up the
users can sleep, assuming the policy described abovenachine to service it. To make a judicious choice, the
The results are rather dramatically different for acrossproxy must have some knowledge of network traffic—
environments. In the office, there is almost no oppor-what traffic is safely ignorable, what applications do
tunity to sleep for the majority of the users. This indi- packets belong to, which applications are essential, and
cates that the magic packet-like approach will not sucso forth. In this section, we do a top-down deconstruc-
ceed in saving any energy for machines in a typical cortion of the idle-time traffic traces aimed at learning the
porate office environment. For the home environmentanswers to these questions.
we see that roughly half the users can sleep for over,) L .
50% of their idlegtirr):es. Thus in these enviror?ments, a4'1 Traffic Classes by Communication Paradigm
10s transition time coupled with a WoP type policy can To begin, we look at all packets exchanged during idle
be somewhat effective. However, these estimates assunfi@riods, and classify each packet as either being a broad-
perfect knowledge of future traffic arrivals and also fre- cast, multicast or unicast packet. Within these broad traf-
quent transitions in and out of sleep—in practice, we exfic classes, we further partition the traffic by whether the
pect the achievable savings would be somewhat loweRackets are incoming or outgoing, for both the home and
Nonetheless, this does suggest that efforts to reduce syséffice environments. We separate incoming and outgoing
tem transition times in future hardware could obviate thetraffic because we expect them to look different in terms
need for more complex power-saving strategies in certai®f the proportion of each class in different directions
environments. (e.g.,most end-hosts ought to send little broadcast traf-

We conclude that while significant opportunity for fic). Similarly, we look at different usage environments
sleep exists, capitalizing on this opportunity requires so because itis intuitive that the dominant protocols and ap-
lutions that go beyond merely waking the host to han-plications used in each environment may differ. Since we
dle network traffic; we thus consider solutions based orexpect these differences, we treat them as such to avoid
proxying idle-time traffic in the following sections. mischaracterizations. The breakdown of our traffic ac-
. . cording to all these partitions in depicted in Fig. 5.
4 Deconstructing traffic We note that outgoing traffic is dominated by unicast
In the previous section we saw that, by just waking uptraffic since, as expected, each host generates little broad
to handle all packets, our ability to increase a machine’sast or multicast traffic. We also find that incoming traffic
sleep time is limited. In particular, we see virtually no at a host sees significant proportionsadifthree classes
energy savings in the dominant office environments. Thiof traffic, and this is true in both enterprise and home
suggests that we need an approach that is more discrinenvironments. This suggests that a power-saving proxy
inating in choosing when to wake hosts. This leads us tanight have to tackle all three traffic classes to see signif-
an alternate solution to the WoL which is to employ aicant savings.
network proxy whose job is to handle idle-time traffic on So far, we looked at traffic volumes as indicative of the
behalf of one or more sleeping hosts. Packets destinedeed to proxy the corresponding traffic type. We now di-
for a sleeping host are intercepted by (or routed to, derectly evaluate the opportunity for sleep represented by

100

each traffic type. To understand the maximum sleep

opportunities, we consider for a moment an idealiz @ s T

scenario in which we use our proxy to ign@iincom- 5 B Wakeall
ing packets from either or both of the broadcast and f_é Olgnae meast
ticast traffic classes. A machine always wakes up for u 0\2 %0 B Ignae beast
cast packets. Fig. 6 shows the sleep potential in fours g s | Olgnae both
narios: a) ignore only broadcast and wake for the re &

c) ignore only multicast and wake for the rest; c) ignc
both broadcast and multicast. For comparison purpc

. . .) Home Office
we also include the results for a scenario d) in whi Figure 6: Average sleen opportunity when ianoring mul-
we wake up for all packets. This comparison allows us 9 ’ 9 P opp y 9 9

to compare the benefits derived from these four differen%'caSt and/or broadcast traffic, for different environnsent
g][?éyigg';';z‘ ti](;rt iii?dus:\r/g\gzgﬁrzgg:idsltgeepfirna;tlﬁr_}mperfect metric s?nce the (in)ability to sIe_ep depends as
der the scenario in question. We use a transition time OFUCh on the precise temporal packet arrival pattern due
ts = 10s and the results are averaged over 250 users foro.the prptocol ason packet yqlumes. None.thelless, were-
both home and office environments. tain traffic-volume as an intuitive, although |pd|rect mea-

We make the following observations: sure of protocol badness. Our second metric—which we

(i) Broadcast and multicast are largely responsible forerm thehalf-sleep timg denoted .50 — more directly

poor sleep. It we can proxy these, then we can recuper” (BSCER 8 BRSO T FICIRRFOOR,
ate over 80% of the idle time in home environments. And P P

.) . ., _type) P as the largest host transition time that would be
in the office, where previously sleep was barely possible 4 .

. . tequired to allow the host to sleep for at least 50% of its
we can now sleep for over 50% of the idle time.

- . : . idle time, under the scenario where the machine wakes
(i) Doing away with only one of either broadcast or . :

: . . . up for all packets of typé” and ignores all other traffic.
multicast is not very effective (we suspect this is due to

the periodicity of multicast and broadcast protocols, andarlllet];faef?itc’toiﬁse? S]L;nttggsdtsz Itgtl:r:t:aonrt:t%tégv;? ilgtr:ecr)(rait
evaluate this in later sections). P '

More generally, the graph clearly indicates a valuablethen a pr_otocc_)l whose packe'Fs arrive spac_ed far enough
conclusion—if we're looking to narrow the set of traf- apart in time is more conducive to sleep since the host

fic classes to proxy, then multicast and broadcast trafh"iIS sufﬁugn:[{ t'_rt‘e tggé‘”s'“o” mt "’tjn? out of slteep.
fic appear to be clear low-hanging fruit and should be]c I? mor\?v etaill s thIStC(tm;?'u edirom o#r :aces ?S
our primary candidates for proxying. That said, proxying oflows. Ve measure Ihe total ime a given host can sieep

unicast traffic appears key to achieving higher Savingsassuming it wakes up for all the packets of the protocol

(beyond 50%) in the enterprise and hence should not b nder consideration and ignores all others. We cqmpute
dismissed either. We thus continue, for now, to study allh's number for all hosts and take the average. This gives
three traffic types ' ' us an upper bound on achievable sleep if the protocol

Of course, whether these potential savings can actuall{f handled by waking the host. We estimate this sleep

be realized depends on whether a particular traffic typéjura_tion for different valugs of the host_transition time
can indeed be handled by a proxy without waking ther@nging from 0 seconds (ideal) to 15 minutes. The largest

host. This depends on the specific protocols and applicaQf these transition times that allows the host to sleep

tions within that class and hence, in the remainder of thidOr over 5:)% of 'tg |.dlslt|me |s;he protoc0|t$h_.5(r)] ‘
section, we proceed in turn to deconstruct each of broad- 'NtUItVely, t s 50 indicates the extent to which a pro-

: - . tocol is “sleep friendly” since protocols with large val-
cast §4.2), multicast 4.3) and unicasté.4) traffic. .)
64.2), multi “3) unicast@.4) I ues oft s_50 could simply be handled by allowing the

4.2 Deconstructing Broadcast machine to wake up; whereas those with low values of
Our goal in this section is to evaluate individual broad-t s_50 imply that (to achieve useful sleep) the proxy
cast protocols, looking for: (1) which of these protocols must handle such traffic without waking the host.

are the main offenders in terms of preventing hosts from For our evaluation, we classify each packet by protocol
sleeping and, (2) what purpose do these protocols servand rank them by both metrics: traffic volume and the
and how might a proxy handle them. Answering the firsthalf-sleep time. We begin by measuring traffic volume,
guestion requires a measure of protocol “badness” wittwe then establish the top ranking protocols by volume,
respect to preventing hosts from sleeping. We use tw@nd use these as candidates for our second metric, the
metrics for our evaluation. The first is simply the total half-sleep time. When presenting the top ranking proto-
volume of traffic due to the protocol in question. While cols by each of the metrics, we consider : (1) the proto-
high-volume traffic often makes sleep harder, this is arcols whose traffic volumes represents more than 1% of

Office Home Office Home
Protocol % of traffic [Protocol % of traffic Protocol % of traffic |Protocol % of traffic
ARP 4613 [ARP 4256 HSRP 5958 [SDP 94.4
NBNS 2289 |sDP 19.63 SDP 2491 [HSRP 231
IPX 10.12 NBNS 9.48 PIM 6.04 IGMP 184
NBDGM 591 CUPS 5.6 IGMP 5.05
LLC 3.28 LLC 44 EIGRP 188
ANS 2.85 UNISTIM 4.07
S R . . T
BOOTP 2.01 NBDGM 2.3
NTP 113 BOOTP 1.02 Figure 9: Protocol composition for incoming multicast
Other 322 |Other 714 traffic, in both office and home enviroments, ranked by
Total 100 Total 100

per-protocol traffic volumes.
Figure 7: Protocol composition of incoming broadcast

traffic, in both office and home environments, ranked by Office Home
per-protocol traffic volumes. All Mcast 0-1s All Mcast 1-2min
HSRP 0-1s SSDP 4-8min
Office Home PIM 8-9s HSRP >15min
All Bcast 1-2s All Bcast 10-20s IGMP 20-30s IGMP >15min
ARP 2-3s ARP 1-2min SSDP 20-30s
NBDGM 10-20s |[NBDGM 2-4min
NBNS 2-4min |[NBNS 4-8min Figure 10: Protocol composition for incoming multicast
IPX 4-8min traffic, in both office and home environments, ranked by

Figure 8: Protocol composition for broadcast protocolst $-50.

ked byt s _50 . . .
ranked byt s 4.3 Deconstructing Multicast

the total traffic at the host and (2) the protocols with a 12l€ 9 and 10 present our protocol rankings for
half-sleep time of less than 15 minutes. Table 7 and gnulticast traffic. Again, we also present the value of
present our results for broadcast traffic. For complete! S-50 when considering all multicast traffic taken to-
ness, we also present the value st 50 when consider- gether. We see that, multicast traffic (as a whole) can
ing all broadcast traffic together. be a bad offender in enterprise environments with an
In terms of traffic volumes, we see that the bulk of t $.50 = 0—1s. Itturns out that this is largely caused by

broadcast traffic is in the cause of address resolution anéoutertr?lfﬁg—the dHOt SMtaIrIQby Rglljlt/? ' Eggl (HSRP),
various service discovery protocoks.g.,ARP, Nethios rotocol Independent ulticast (PIM), £

Name Service — NBNS, the Simple Service Discovery This traffic is elthgr absenE(g.,I_DIM) or greatly re-
Protocol used by UPnP devices — SSDP). These protoqur_:(ad €.9., HSRP) n home environments .W.h'Ch ex-
cols are well represented in both home and office LANs.pl.alns why multicastis much less problematic in homes,
A second well-represented category of traffic is fromWlth ant .50 = 1 — 2 minutes (compared t0 — 20s

" . . for broadcast).
router-specific protocolse(g.,routing protocols imple The good news is that all router traffic (HSRP, PIM,
mented on top of the IPX).

. IGRP) is safely ignorable. In fact, many modern Ether-
In terms of the half-sle_ep time, we see th_at broadcasﬁet cards already include a hardware multicast filter that
as a whole allows very little sleep in the office: achlev-discards most unwanted multicast traffic
ing 50% sleep would require very fast .transitions (be- As with broadcast traffic, we also see significant traffic
tween 1 and 2 _.T,_(re]con.ds), ot .fea;]smle vl\il'tAhNtO(;iayg, h‘_";.rdéontributed by service discovery protocols: in this case
Warel sliJpport. N itulatlonl n omef S |S|S|gn| " SSDP, the Simple Service Discovery Protocol used by
Cant){w et[t_]erts_SO N ﬁOS)a h terms 0 _ﬁ)rotoc%s, W? UPNP devices. Once again, for protocols such as SSDP
see that the greatest offenders are similar to those frorg,, IGMP, it is fairly straightforward for a proxy to auto-

our traﬁ:\(ig/gl(l;'r\r/:e an;nllil/sis, namely: ARNIEI\II\ISetbiOSd?g;?'matically respond to incoming traffic without waking the
grams () and Name Queries (). an * host; doing so would require some amount of state at the

On closer examination, we find that most of these Of'proxy such as the list of multicast groups the interface

fending protocols could be easily handled by a proxy:peiongs to and the services running on the machine.
for example, IPX is safely ignorable, ARP traffic that is

not destined to the machine in question is likewise safely*-4 ~Deconstructing Unicast

ignorable; for ARP queries destined to the machine, itFinally, we present our protocol ranking for unicast traf-

would be fairly straightforward for a proxy to automati- fic in Tables 11 and 12. Because much of unicast traf-
cally construct and generate the requisite response withfic is either TCP or UDP, and this level of classifica-

out having to wake the host. tion is unlikely to be informative, we further break each

100%

Transport |Sesson % of traffic
Protocol Protocol 75% -
TCP 94.73 O Unknown
DCE/RPC 2491 50% | .
NBSS 1485 u Soungrgggo
HTTP 12.31] 25% - M Incoming
TPKT 3.82 conredio
s 2.68 0% |
VNC 2.45 IN ‘ out IN ‘ out
Other 3371 ,
UDP 3.75 Home Office
DNS 1 Figure 14: Fraction of packets generated by incoming vs.
omp Other 126 2122 outgoing connections. For home and office, both received
Other 023 023 and transmitted packets.
Total 100 10d

Figure 11: Protocol composition of incoming unicast)
traffic in office enviroments, ranked by per-protocol traf- an alternate strategy. We classify TCP and UDP pack-

fic volumes ets based on the connections they belong to and catego-
: rize connections as incoming vs. outgoing. Our interest
Office Home in this classification is because we suspect that a large
All Ucast 10-20s All Ucast 50-60s . . .
TCP 1020s __|uDP 1-2min portion of packets are likely to belong to outgoing con-
UDP 1-2min [DNS 1-2min nections. And while a host might wake for incoming con-
BEE/RPC ;'im!" TCP 8-15min nections, waking for outgoing connections might well be
SMB 4:8$:2 avoidable (for reasons discussed below). From the results
NBNS 4-8min in Fig. 14, we see that outgoing connections do indeed
HTTP 8-15min dominate. Now for a sleeping machine, there are three

Figure 12: Protocol composition of incoming unicast possibilities for these outgoing connections: (1) the con-
traffic in office environments, ranked by 50 . nection was initiated by the host before the idle period—

in this case, such traffic might not be ignorable if the

Port App 1s_50 host/proxy wants to maintain this connection, hence we
Zl(i:/ Zskeep many 1-2min hope this percentage of traffic is small, (2) the connec-
UDP 53 DNS 2_4min tion was initiated but failed (3) the connection was ini-
TCP 1025 [DCE/RPC |2-4min tiated by the host after the start of the idle period; for
TCP 445 [SMB/CIFS [4-8min a sleeping host, these connections would either simply
TCP 63422 |Bigfix 4-8min never have been initiated (if the connection were deemed
repss DNS 4-8min unncessary) or, the host would be deliberately woken to
TCP 80 HTTP 8-15min _— . : .

UDP 63422 |Bigfix 8-15min initiate these connections (if the connection were deemed
TCP SYNs |many > 15min necessary, as for services scheduled to run during idle

times). For the former, the traffic can simply be ignored
from our accounting and, in the latter case, such sched-
uled processing is easily batched and hence needn't dis-
rupt sleep. Hence for all but the first case, waking the
. . . machine might be avoidable. We plot this breakdown of
down by session-layer protocol with an additional map-Outgoing connections in Figure 15. We see that only a

ping from ports in Table 1.3' Unfo_rtunat_ely, u_nl_lke the relatively small percentage of outgoing connections — al-
case of broadcast and multicast, with unicast, it is harder

o ded the ultimat f h of this trafi ways less than 25% — belong to the first category which
0 deduce the uitimate purpo|§e tf)r rr|1uc | 0 i IS Ir% ICmight require waking the host. Based on this, we specu-
since even the session or application-ievel pro ?C.O Ic (?,nl'ate that, it might be possible to eliminate or ignore much
tifiers are fairly generic. (One exception is the “BigFix - -
R S i . of even unicast traffic.

application listed in Fig. 13. BigFix is an enterprise soft-
ware patching service that checks security compliance of Early in this section, we asked whether one mightiden-
enterprise machines; based on the frequency and voluntiy a small set of of protocols or proxy behaviors that
of BigFix traffic we see, it appears to have been config-could yield significant savings. We find that, the answer
ured by an over-zealous system administrator.) is positive in the case of multicast and broadcast but less

Stymied in our attempts to deconstruct unicast trafficclear for unicast traffic. In the next section we consider
based on whether and how it might be proxied, we trythe implications of our traffic analysis for proxy design.

Figure 13: Protocol composition for unicast traffic based
on TCP and UDP ports, ranked bg 50

100 Don't HSRP, ARP, PIM, NBDGM, ICMP, IGMP,
wake SSDP
& Don't ARP (for me), NBNS, DHCP (for me)
O New ignore

%0 conredions Tapje 1:Protocols that shouldn't cause a wake up (too expen-

B Faled sive in terms of sleep), and protocols that should not berigho

2 conredions ¢or correctness).
ol Ignorable HSRP, PIM, ARP (for others), IPX, LLC
Home Office ALL EIGRP, DHCP
Figure 15: For outgoing connections: the fraction of _Protoco| State
incoming packets that belong to new connections ang ARP IP address
failed connection attempts. Mechanical | NBNS | NB names of machine and

local services

. SSDP Names of local plug-n-play
5 A Measurement-driven Approach to cervices

Proxy Design IGMP | Multicast groups the inter-
face belongs to
ICMP IP address

Response

Having studied the nature of idle-time traffic, we now ap-
ply our findings to the design of a practical power-saving NBDGM! NB names of machine and
proxy. We start in Section 5.1 by extracting the high-level local services. Ignores pkts.
design implications of our traffic analysis from the previ- not destined to host, wakes
ous section. Building on this, in Section 5.2, we illustrate host for rest

the space of design tradeoffs by considering four specifigraple 2:pProtocols that can be handled by ignoring or by me-
examples of proxies. In Section 5.3, we distill our find- chanical response. We classify DHCP as ignorable because we
ings into a proposal for a core proxy architecture that of-choose to schedule the machine to wake up and issue DHCP
fers a single framework capable of supporting the broadequests to renew the IP lease — an infrequent event.

design space we identify.

exclusive; for example, ARP traffic is both frequent and
critical and hence falls under both categories.

At minimum, a power-saving proxy should: (a) allow the (3) policy-dependent traffic: for the remainder of traf-
host to sleep for a significant fraction of the time, andfic, the choice of whether and how a proxy should handle
(b) maintain the basic network presence of the host bythe traffic is a matter of the tradeoff the user (or soft-
ensuring remote entities can still address and reach thgare designer) is seeking to achieve between the sophis-
machine and the services it supports. Beyond this, weication of idle-time functionality, the complexity of the
have a significant margin of freedom in choosing how aproxy implementation and energy savings. We shall ex-
proxy might handle the remaining idle-time traffic and plore these tradeoffs in the context of concrete proxy im-
applications. Viewed through this lens, our results fromplementations in Section 5.2.

Section 4 lead us to differentiate idle-time traffic along A complementary dimension along which we can clas-
two different dimensions. The first classifies traffic basedksify traffic is based on the complexity required to proxy
on the need to proxy the traffic in question: the traffic in question:

(1) don’t-wake protocols: these are protocols that gen- (A) ignorable (drop): this is traffic that can safely be
erate sustained and periodic traffic and hence, ideallyignored. Section 4 identified several such protocols and
would be dealt with (by a proxyyithoutwaking the host the top ranked. of these are listed in Table 2. Comparing
since otherwise the host would enjoy little sleep. Exam-Tables 1 and 2, we see that (fortunately) there is a sig-
ples of such protocols identified in the previous sectionnificant overlap betweedon’ t - wake and ignorable
include IGMP, PIM, ARP. Table 1 lists a set of protocols protocols. Policy-dependent traffic/applications that ar
we classify as don’t-wake. deemed unimportant to maintain during idle times could
(2) don't-ignore protocols: these are protocols that re- likewise be ignored whiledon’ t -i gnor e protocols
quire attention to ensure the correct operation of higherebviously cannot be.

layer protocols and applications. For example, we mus{B) handled via mechanical responseshis includes in-
ensure the DHCP lease on an IP address must be maigeming (outgoing) protocol traffic for which it is easy to
tained and that a machine must respond to NetBlOSonstruct the required response (request) using lite-to
name queries to ensure the services it runs over NetBIOSo state transferred from the sleeping ho.nction is some-
remain addressable. The protocols we identified as don’'twhat subjective, based For example, a proxy can easily
ignore are listed in Table 1. Note that the list of don't- respond to NetBIOS Name Queries asking about local
wake and don’t-ignore protocols need not be mutuallyNetBIOS services, once these services are known by the

5.1 Design Implications

proxy. Table 2 lists key protocols that can be dealt withand (3) wakes the machine for all other incoming traffic.
through mechanical responses. Since this proxy needs more state to generate mechani-
(C) require specialized processingthis covers proto- cal response®(g..the NetBIOS Names of local services,
col traffic that, if proxied, would require more complex needed to answer NBNS queries), it can also use this ex-
state maintenance (transfer, creation, processing and upra information to selectively ignore more packets than
date) between the proxy and host. For example, considgsr oxy _2 (e.g.,ignore all NetBIOS datagrams not des-

a proxy that takes on the role of completing ongoing p2ptined for local services).

downloads on behalf of a sleeping host — this requires

that the proxy learn the status of ongoing and schedpmxy‘3 Our third proxy generates even deeper savings

uled downloads, the addresses of peets,and more- by only maintaining a small set of applications, (chosen

) y the user) operable during idle times, while ignoring all
over that the proxy appropriately update/t_ra_nsfer state alcg)ther traffic. We use telnet, ssh, VNC, SMB file-sharing
the host once it resumes. In theory, specialized process-

ing would be attractive fopol i cy- dependent traf- and NetBIOS as our applications of interest. This proxy
fic that is both important and frequently-occurring (sinceperforms the same actions (1) and (2) as implemented by

. . . ' pr oxy_2 (ignore and responds to the same set of proto-
otherwise we could simply drop unimportant traffic and cols), but it (3) wakes up for all traffic belonging to an
wake the host to process infrequent traffic). ’ P ging y

Of course, in addition to the the above (classes A—Of telnet, ssh, VNC’.SMB f“e'Shafing and.NetBIOS and
Q). for traffi;: that a proxy doesn't ignore but doesn't (4) drops any other incoming traffic. Relative to our pre-

. vious examplepr oxy_2 is less transparent in that the
want/know to handle a proxy always has the option of . :

.) . machine appears not to be sleeping for some select re-
waking the host. Essentially the decision of whether to ote apolications. but is inaccessible to all others
handle desired traffic in the proxy versus waking the host" PP ' '
represents a tradeoff between the complexity of a proxyproxy 4 All the above proxies implement functionality
implementation and the sleep time of hosts. related to handling incoming packets. In our final proxy,
we also consider waking up for scheduled tasks initiated
) ~locally. This proxy behaves identically pir oxy -3 with
We now present four concrete proxy designs derivedegpect to incoming packet, but supports an additional
from the distinctions drawn above. We select these proxzction: (5) wake up for the following tasks (for which
also representative of practical and useful proxy designsyrder to perform them): regular network backups, anti-

proxy_1 We start with a very simple proxy that: (1) viru_s (McAfee) software updates, FTP_ _traffic for auto-
ignores all traffic listed as ignorable in Table 2 and (2) matic software updates, and Intel specific updates.
wak_es the mach_ine to handle all other incoming traﬁiC'EvaIuating tradeoffs In the following we compare the
_Beades cle_zarly ignorable protocpls_, we c_hoo_se to als%leep achievable by our 4 proposed proxies, and com-
ignore traffic generated by the Bigfix application (TCP 5 ¢ it with the baseline WoP case. We perform this eval-
port 63422) , which we previously identified (Section 4) | ation for both office and home environments, and in
to be one of theig offendersWe do so because this traf- o50h case we evaluate 3 possible values for transition
fic is @) not representative for non-Intel machines, and b}inests: 5. 10 and 60 seconds. The first of these (5s)
the application is very badly configured — sending veryis 5 yery optimistic transition time, not achievable today
large amounts of traffic for little offered functionality — ,qjng S3 sleep states, but foreseeable in the near future
making sleep almostimpossible. _ (today, Microsoft Vista specifications require computers

This proxy is simple — it requires no mechanical Or Spe+, o5 me from S3 sleep in under 2s [18]). The second
cr:allzed proce_ssmg;]. Al thi sarr(e t|mhe, k;]ecallfse 't”mallfeﬁOs) is representative of the shortest transitions achiev
the conservative choice of waking the host for all ral- 5,0 544y [6], and the last (1min) is representative of a
fic not known to be safely |gn_oraple, th's proxy is fully setting that allows almost a minute for processing sub-
transpare_ntto users and appllcano_ns, in the_ Sense thatsequent relevant network packets before going to sleep
th_e effective behaV|_0r of th_e sleeping machine is neve%lgain. The advantage of using a very short timer before
different frorln_ hagl It beehn |d(|jefj_(gxceipt flt()r the perfor- 4 ing to sleep is the increased achievable sleep. The dis-
mance penalties due to the additional wake-up time). 54y antage is that the delay penalty for waking the host
proxy_2 Our second proxy is also fully transparent, but will be incurred at more packets. In the extreme case of
takes on greater complexity in order to reduce the frevery short sleep timers, this could make remote appli-
guency with which the machine must be woken. Thiscations sluggish and un-responsive. For the wake events
proxy: (1) ignores all traffic listed as ignorable in Table 2, generated by scheduled tasks, we use a longer transition
and (2) issues responses for protocol traffic listed in thgime (and thus a longer sleep timer value) of 1min, since
same table as to be handled with mechanical responsasich tasks usually take longer time to complete.

5.2 Example Proxies

i
o
o

T e sists of arigger, anactionand atimeout
= e
I mPoxy 1 Triggers are either timer events or regular expressions
5 50 OProxy_2 describing some network traffic of interest. When a trig-
g »s W Proxy_3 ger's timer event fires or if an incoming packet matches a
g BProxy_4 trigger’s regular expression, the proxy executes the cor-
o , responding action. If the action involves waking the host,
ts=1min ts=10s ts=5s . i . . .
_ : the timeout value specifies the minimum period of time
a) Office environment i i
_ for which the host must stay awake before contemplating
§ 100 Evaeal sleep_again. To resolve myltiple matching rules_, _st_andard
2 EProxy 1 techniques such as ordering the rules by specificity, pol-
5 50 O Proxy_2 icy, etc.can be used. The proxy table must also include a
S 25 - efaultrule that determines the treatment of packets tha
; B Proxy_3 defaultrule that det the treatment of packets that
g BProxy_4 do not match on any of the explicitly enumerated rules.
ts=1min ts=10s ts=5s We propose the following actions:
b) Home environment e drop: the incoming packet is dropped.

Figure 16: Savings achieved by different proxies in home® Wake: the proxy wakes the host and forwards the pack-
and office environments. ets to it. Other packets buffered while waiting for the

wake will be forwarded as well.

Examining the performance of our proxies, we make® reéspond(enpl ate, state): the proxy uses the
the following high-level observations) At one end of specifiedtemplateto craft a response based on the in-

the spectrumpr oxy_L(the simplest) is inadequate in €OMing packet and sonstatestored by the proxy. This
office environments, and borderline adequate in hom@&ction is used to generate mechanical responses as de-
environmentsb) At the other end of the spectrum we SCribed below.

havepr oxy _3, which only handles a select number of ® redl_rect_handl e):_ the proxy forwards the packet_to
applications, but in return achieves good sleep in all sce@ destination specified by tteand! e parameter. This
narios — more than 70% of idle time even in the officeS Used to accommodate specialized processing as de-
and with a transition time of 1minute) The efficiency ~ Scfibed below.

of proxy 2 depends heavily on environment. While the A response template is fanctionthat computes the
additional complexity (compared far oxy_1) makes it mechanical response based on the incoming packet and
a good fit in home environments (sleeping close to 609Pne or morémmutablepieces of state. This means that
even forts = 1min), having to handle all traffic makes our function does not maintain or change any state. There
it a worse fit for the office (sleeping 12% for the same is no state carried over between successive incoming
transition time). This shows that, unless they support dackets (such as sequence numbers), and no state trans-
large number of rules, transparent proxies are a better ff€" between the proxy and the host upon wake-up. We
for home, but not the officel) The best tradeoff between C€hoose to support this functionality because a) it is rel-
functionality and savings, and therefore the appropriaté@tively simple to implement in practice and b) it covers
proxy configuration, depends on the operating environinost of the non-application specific traffic, as shown in
ment.e) Since scheduled wake-ups are typically infre- Section 4, and illustrated in our proxy examples.

quent, the impact they have on sleep is minimal — in our To accommodate more specialized processing, we as-

casepr oxy_4 sleeps almost as muchpsoxy _3 in all sume developers will write application-specific stubs and
considered scenarios. then enter a redirect rule into the proxy’s PPT, where

the handl e specifies the location to which the proxy
should send the packet. Such stubs can run on machine
Our study leads us to propose a simple proxy architecturaccessible over the network.§.,a server dedicated to
that offers a unified framework within which we can ac- proxying for many sleeping machines in a corporate
commodate the multiplicity of design options identified LAN), or on a low-power micro-engine supported on
above. The proposal we present is a high-level one sincthe local host€.g.,a controller on the motherboard, or
our intent here is merely to provide an initial sketch of a USB-connected gumstick). In all these cases, the han-
an architecture that could serve as the starting point fodle would be specified by its address, for example a (IP
future discussion on standardization efforts. address, port) combination. The redirect abstraction thus
The core of our proposal is a table—the power-proxyallows us to accommodate specialized processing with-
table (PPT)—that stores a list ofiles Each rule de- out embedding application-specific knowledge into the
scribes the manner in which a specified traffic typecore proxy architecture.
should be handled by the proxy when idle. A rule con- The external API to this proxy is twofold: (1) APIs to

5.3 A strawman proxy architecture

———— 1
INPUT ["From Network Card

ing for machines with different hardware platforms (new

Address Glassiier Learning e H and old) and operating systems. The proxy requires min-
Unicast | g ‘ Meast | Unicast [g el imal configuration (a list of the MAC addresses of the
tobost el o) hosts that need to be proxied), and can be incremen-
eeper ate
Drop oy ° \/ tally deployed as a low-power stand-alone network box.
p— Once low-power proxying standards are developed [12],
 — .
TARPQuery | ARPSover | the design can be extended to support state transfer, and
2 NBNane Query |——————— 1 NONS Solver | achieve even deeper energy savings
(" bnicast Do Host State Host State Our prototype implements very basic proxying func-
riggers . - . . .
gg ASLEEP | Other ASLEEP | _Other tionality, but the software architecture (presented in Fig
Host Stat I T .
Classifer : : ure 17) can be easily extended to more protocols and
ASLEEP | Other | use cases. Currently, we support three types of actions:

wake respondanddrop. The proxy awakes its hosts for
Response Generator TCP connection requests (incoming TCP SYN packets)
S and incoming Netbios Name Queries for the host's NB
) name. If such a “wake packet” for a sleeping host arrives,
P buffers the request, sends a magic packet to wake the

L Y Delayed Per | ueve k————— host, and relays the buffered packet once the host be-

comes available. The proxy responds automatically to

i
Ucast Cl

1: TCP Syn =
2: ..

: ; 2
. S
Default: — S

Notifications

from StateKeeper [TTo Network Card_] 0UTPUT incoming ARP requests, and drops all other incoming
Figure 17: Example Click implementation. packets. In relation to the examples discussed in Sec-

tion 5.2, this prototype hassampleandnon-transparent

activate/deactivate the proxy as the host enters/exipsle 4€Sign- To determine whether a host is awake, the proxy
and (2) APIs to insert and delete rules. The process byends periodic ARP queries to each host; if these queries
which to install and execute stubs is outside of the cord€CEIV€ N0 response, the host is assumed to be asleep.
proxy specification which only provides the mechanism'hen the proxy attempts to wake a host and fails repeat-
to register and invoke such stubs. The architecture is ag‘?dly’ the hostis assumed to .be c,’ff'_ rather than just asleep,
nostic to where the proxy runs allowing implementations@nd the proxy ceases to maintain its network presence.

in hardware (e.g., at host NICs), in PC software (e.g., & Figure 17 presents the software architecture of our
proxy server running on the same LAN) or in network Click proxy, and highlights the mapping between Click
equipment (€.g., a firewall, NAT box) modules and the generic categoriegragers actions

Finally, the use of timer events to wake a host alreadyandState discussed in the strawman proxy architecture.

. - . : We test our Click-based proxy implementation by in-
exists today. Our contribution here is merely to integrate .~ "~ .
o o : stalling it on one of our enterprise desktops, and con-
the mechanism into a unified proxy architecture. o o
figuring the proxy to maintain the network presence of

5.4 Proxy Prototype Implementation several IBM ThinkPad laptops. We use this deployment

to measure the delays experienced by applications wak-
ing a sleeping host, and find these to be surprisingly low:

2.4s on average, ands at maximum — much lower than

To illustrate the feasibility of our architecture, we build
a simple proxy prototype using the Click modular
ro_ute_r [17]. We choose to _deploy the proxying fqnct_lo_n- the 30s TCP SYN timeout. These delays includes the
ality in a standalone machine responsible for maintainin

the network presence of several hosts on the same LA .O.Srte\:jv?lgiﬁg d?éay:i; ﬁgzé;nt?];h:t;id;']c;?]alé'r;r? dr(rzla
To allow our proxy (let us call i?) to sniff the traffic for qul proxy . g y
the buffered packet causing the wake {s). We defer

each host, we ensure th&t shares the same broadcast : :

L . . : a comprehensive deployment-based evaluation to future
domain with these hosts. This can be achieved either b%

. : ork.

connecting the proxy and the machines to a common net-
work HUB, or by configuring the LAN switch to forward 6 Power-Aware System Redesign
all traffic to the port that serveB.

L)) . In this section we consider approaches that might assist
In our initial design, we don’t implement proxies that

_ X in reducing idle-time energy consumption by either sim-
involve transferring state between the host and the prox lifying the implementation of proxies or altogether ob-
Instead,P learns the pieces of state required (e.g. the | Viating the need for proxying.

address and the Netbios name for each host) by sniff- ,

ing host traffic and extracting the state exchanged (e.g>-1 Software Redesign

ARP and NBNS exchanges). This design circumvent theDur idle traffic analysis shows that solutions relying
need for any end-host modifications, and support proxyeon Wake-on-LAN functionality face the following chal-

lenges: (i) It is difficult to decide if various packets and updates/message exchanges, and try to synchronize, or
protocols warrant a machine wake-up.(ii) Hosts receivebulk these exchanges together. This would allow ma-
many packets even when idle (3 per second on averageghines to periodically wake up, process all notifications
(iif) Many protocols exchange packets periodically, pre-and request, and resume sleep.

venting long quiet periods Wh_en hosts could s_lee|_o. Thes%omplementing soft statéany protocols €.g.,SSDP,
challenges could be dealt with at both application anq\letBIOS, etc.) maintain and update state using peri-

protocol level: odic broadcast notifications/ For such protocols (and
Power-aware application configuration Today, appli- for similar applicatios), it would be essential to make
cations and services are typically designed or configurethem disconnection-tolerant, by providing complemen-
without taking into account their potential impact on the tary state querymechanisms that could be used quickly
power management at end-systems. For example, in Sebuild up-to-date copies of the soft state upon waking.
tion 4.4 we discussed a tool called Bigfix, that checks ifThis would enable ignoring any soft state notifications.
network hosts conformto Intel’s corporate security spec-Today, such query mechanisms exist only for some of
ifications. This application was configured to performthese protocols, and they are often inefficient.
these checks very aggressively, continuously generatin .
large amounts of traffic. Under a WoL approach, this ap—g'2 Hardware Redesign
plication alone would have made prolonged sleep virtu-A general goal of energy saving mechanisms, especially
ally impossible. hardware designs, is to lead the industry towards energy
This is a perfect example of the behaviour that could bgproportional computing [8]. If energy consumption of a
avoided by configuring applications to be more power-machine would accurately reflect its level of utilization,
aware, and perform periodic tasks less frequently, reducthe energy would be zero when idle. Sleep states are a
ing the volume of network traffic seen by hosts. step in this direction, P-states (low power active opera-

Protocol SpecificationThe decision to ignore or wake ion) are another. Related_to this, it would be very desir-

on a packet can be difficult, and involves protocol pars-2PI€ 0 expose power saving states (S states) that feature

ing, maintaiing a long set of filters and rules, and for bgttertransmon times, even if they offer smallersgvmgs

some protocols host or application-specific state. Given the small inter-packet gaps, these states will come
To eliminate the complexity of this decision, and al- in handier than the deep-sleep ones.

low hosts to sleep longer even when using very simple7 Related Work

rules for waking, protocols could be augmented to carry

explicit power-related information in their packets. An The notion that internetworked systems waste energy

example of such information would be a simple bit indi- due toidle periods has been frequently reiterated[14,

cating whether a packet can be ignored. 13, 16, 19, 10, 7, 15]. Network presence proxying for
the purpose of saving energy in end devices was first

proposed over ten years ago by Christenseml,; in

))) _ follow-up work [11] the authors quantify the potential
Consideration when using broadcast and multicd¥ sayings using traffic traces from a single dormitory ac-
saw earlier that broadcast and multicast are mainly rezess point and in [13] examine the traffic received at a
sponsible for keeping hosts awake. This type of trafficgjngle idle machine to identify dominant protocols and
could be substantially reduced by redesigning protocolgjiscuss whether these can be safely ignored. Our work
to use broadcasts sparingly. Some protocols are partiGyraws inspiration from this early work extending it with
ularly inefficient in this respect. For example, all Net- 4 large-scale and more in-depth evaluation of idle-time
BIOS datagrams are always sent over Ethernet broadcagkfic in enterprise and home environments. A more re-
frames. These frames are received by all hosts on thgent proposal [7]. postulates the notion of “selective con-
LAN, and then discarded by most of them. This rankspectjvity”, whereby a host can dictate or manage its net-
NBDGM as one of the top “offenders”, yet this could be ok connectivity, going to sleep when it does not want
easily avoided by using unicast transmissions when posy, respond to traffic.

sible. Another approach is based on the observation thatthere is an extensive literature on energy saving tech-
many service discovery protocols have redundant funchiques for individual PC platforms. Broadly, these aim
tionality. This redundant functionality could conceivabl {5, reduced power draws at the hardware level and faster
be replaced by a single service that can be shared by gansition times at the system level. These offer a com-
multiplicity of applications. plementary approach to reducing the power draw of
Synchronization of periodic trafficOne way to in- idle machines; if and when these techniques lead us to
crease the number of long periods of network quiesperfectly “energy-proportional” computers, the idle-im
cence would be to identify protocols that use periodicconsumption will be less problematic and proxying will

Protocol RedesignWe believe these principles should
be followed when designing power-aware protocols.

fade in importance. So far however, achieving such enReferences

ergy proportionality has proved cha_llenging. [1] Alert Standard Format (ASF) Specification, v2.0,
In parallel work [6], the authors build a prototype proxy DSP0136, Distributed Management Task Forbet p:
supporting BT-TORRENT and IM as example applica- / /v, dnt f . or g/ st andar ds/ asf .

tions. Our work considers a broader proxy design space,[2] ENERGY STAR Program Requirement for Computers.
evaluating the tradeoffs between design options and the _ Version 4.0.nt t p: // www. eu- ener gystar. org.
g . - 9 p. . [3] The Wireshark Network Protocol Analyzemtt p: //
resultant energy savings informed by detailed analysis :
WWw. Wi reshark. org/ .

of network traffic. In relation to our design space, their (4] power and Thermal Management in the Intel Core Duo

proxy supports BT and IM using application stubs. Processor. Iiintel Technology Review, Vol.12006.
. [5] Advanced configuration and power interfadet t p: / /
8 Conclusions WA, acpi . or g.

In general, the question of how a proxy should handle [6] Y. Agarwal, S. Ho_dges, J. Scott, R.' Chandra, P. Bahl, and
R. Gupta. Somniloquy: Augmenting Network Interfaces

the user-idle t_|me traffic presgnts a complex tradeoff be- to Reduce PC Energy Usage. NiSDJ, 2009,

tween balancing the complexity of the proxy, the amount (71 \. Allman, K. Christensen, B. Nordman, and V. Paxson.
of energy saved, and the sophistication of idle-time func- Enabling an energy-efficient future internet through se-
tionality. Through the use of an unusual dataset, collected lectively connected end systems.HotNets 2007.

directly on endhosts, we explored the potential savings,[8] L. A. Barroso and U. Holzle. The case for energy-
requirements and effectiveness of technologies that aim[9] gg’gﬂgig“m ?Om?l;tmﬁog?%m% 10(33)133—37, 2007.
to put eljdhqst machines tp sleep Wh_en users are "?” 10] K. J. Chr.istensr,)én and F. B. Gulledge.gEnabling power
For thg first time here, we dlssgct t.he dlfferent categories management for network-attached computefsterna-

of traffic that are present during idle times, and quan- tjonal Journal of Network Managemerit998.

tify which of them have traffic arrival patterns that pre- [11] K. J. Christensen, C. Gunaratne, B. Nordman, and A. D.
vent periods of deep sleep. We see that broadcast and George. The next frontier for communications net-
multicast traffic constitute a substantial amount of the works: power managemen€omputer Communications
background chatter due to service discovery and routin 27(18):1758-1770, 2004. ,
protocols. Our data also revealed a significant amount oft2] ECMA Intemational. - TC32-TG21 - Proxying

. . . . Support for Sleep Modes. http://ww.
outgoing connections, generated in part by enterprise ap- ecma- i nt er nat i onal . or g/ mement o/

plications. We tried to identify which traffic can be ig- TC32- T&21- M ht m
nored and found that most of the broadcast and multicagt 3] C. Gunaratne, K. Christensen, and B. Nordman. Man-
traffic, as well as roughly 75% of outgoing connections, aging Energy Consumption Costs in Desktop PCs and

appears safely ignorable. Handling unicast trafficismore ~ LAN Switches with Proxying, Split TCP Connections,
involved because it harder to infer the intent of such traf- ~ and Scaling of Link Speednternational Journal of Net-
fic, and often needs some state information to be main- _ Work ManagementOctober 2005.)

tained on the proxy. [14] M. Gupta and S. Singh. Greening of the internetAGM

After having studied our traffic and the sleep poten-(15; ﬁllt%c gmméKzgiguTgéﬁ%rggy ﬁ‘tu ?B:Stlzlosofbport_

tial those patterns contain, we discuss the design space | ntel . com support/ chi psets/rwt/.

for proxies, and evaluate the savings offered by 4 samf16] J. Klamra, M. Olsson, K. Christensen, and B. Nord-
ple proxy designs. These cases reveal the tradeoffs be- man. Design and implementation of a power manage-
tween design complexity, available functionality and en- ment proxy for universal plug and playProceedings
ergy savings, and discuss the appropriateness of vari- of the Swedish National Computer Networking Workshop

ous design points in different use environments, such ais”] (ESN}gmerses 2&%?}is B. Chen. J. Jannotti. and M. F
home and office. : » » B. ; J. , . F.

)) Kaashoek. The Click Modular RouterACM Transac-
Finally, we present a general and flexible strawman {jons on Computer Systeni8(3):263-297, Aug. 2000.
proxy architecture, and we build an extensible Click-[18] Microsoft Window Vista Logo Program Requirements

based proxy that exemplifies one way in which this ar- and Policies. http://ww. nicrosoft.conl
chitecture can be implemented. whdc/ wi nl ogo/ hwr equi r ement s. mspx.

[19] B. Nordman. Networks, Energy, and Energy Efficiency.
Aknowledgments Cisco Green Research SymposjiMarch 2008.

. . [20] C. Webber, J. Roberson, M. McWhinney, R. Brown,
We thank Robert Hays, Ken Christensen, Gianluca lan- ~ 1 pinckard, and J. Busch. After-hours power status of

naccone, Eric Mann, Rabin Patra and Kevin Fall for their office equipment in the uséEnergy 31(14):2823-2838,
suggestions, and Eve Schooler for her help collecting Nov 2006.
trace data. We also thank the anonymous reviewers ani@1] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner. Theo-

our shepherd Yuanyuan Zhou for their useful feedback. retical and practical limits of dynamic voltage scaling. In
DAC, 2004.

