Long-distance Wireless
The Hope, the Hype and The Highway

Lakshminarayanan Subramanian
UC Berkeley & Intel Research

(with input from the TIER group!)
“The technology life cycle has three stages – hype, disillusionment and application.”
-- Bob Lewis, Volkswagen

The TIER take on long-distance wireless:
“Disillusionment is not the truth”
-- Mason Cooley, aphorist
The Hope
Basic Network Setting

City/Internet → Peering Point → T1/T3 → Backhaul network → Access Network → Rural distribution Network

Kiosk

POPS
Directional antenna

- Focus signal in a specific direction
- Directional links can provide roughly a few Mbps bandwidth over 50-100 kms
The necessity for adoption

• For a technology to be adopted in the large-scale, it should:
 – Offer something new
 – Have a significant economic advantage to competing technologies

• Long-distance wireless can provide both!
 – What’s new?
 • Build a wireless backhaul network offering good bandwidth over 100-200km regions
 – Economic advantages
 • Cheap, low initial deployment cost
The potential market...

• Cheap networking infrastructure to rural regions in developing countries

• Challenges
 – No power
 – No infrastructure
 – low purchasing power

• Requirements
 – Low cost
 – Low power
 – Reasonable bandwidth
Why long-distance wireless?

- **Wireless vs Fiber**
 - Fiber provides much more bandwidth but has high setup cost
 - Fiber ill suited for low population densities

- **Intranet vs Internet**
 - Local Intranet applications like health-care, e-governance can be established!

- **Fixed wireless vs Mobile wireless**
 - Point-to-point vs Omni-directional
 - Need lower power for directional links
 - Longer range
 - Better performance
Types of Technologies

• **Key: Use affordable technologies**
 – *mass-produced standardized technologies are generally affordable!*

• Computer networking industry
 – WiFi (802.11)
 – WiMax (802.16)
 – Other commercial technologies
 • WipLL, CorDect

• Telecommunications industry
 – CDMA 450
 • CDMA 1xEVDO – data protocol for CDMA
 – GPRS - Part of the GSM standard
 – Satellite Networks
The Hype
Performance problems

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>4.5 Mbps</td>
</tr>
<tr>
<td>TCP</td>
<td>362 Kbps</td>
</tr>
</tbody>
</table>

• Bad TCP performance over a single 802.11 link from Berkeley->SFO!
 – Frequent timeouts due to bursty loss patterns
• Performance variability
 – Link characteristics are variable!
Other problems

- **Reliability**
 - Unlike fiber, difficult to provide 99+% availability!

- **Maintenance**
 - Link-repairs
 - Labor charges (operating expenses can be high!)

- **Limits of Multi-hop networks**
 - Performance degradation

- **Deployment hassles**
 - Line of sight, terrain (water), antenna alignment
The Highway (the road ahead)
Questions…

• How to achieve good performance?
 – MAC issues
 – Multi-hop issues
 – Understanding the wireless channel behavior

• How to ease deployment?
 – Addressing line of sight challenges

• Are these technologies economically viable?
 – Need for economic analysis

• What applications do they enable?
Rural Telemedicine

A specific example application

- Lack of doctors in rural regions
 - 1 rural clinic for every 50,000 people in Africa!
 - Need to travel long distances
 - Specialists are only present in big cities

- Time is ripe now…
 - Nearest town is less than 200 kms away!
 - Long-distance wireless can be an enabler
 - Availability of cheap medical diagnostic devices
 - Direct video interaction is possible
 - Feasible bandwidth
 - Mobile hospitals
Real-time telemedicine

• Requirements
 – Good audio+video-conferencing capabilities
 – Real-time medical data transmission + feedback

• The Remote Ultrasound Challenge
 – Challenge #1: *Data size*
 • Data compression/ transmission
 – Challenge #2: *Real-time feedback on image quality*
 – Challenge #3: *Remote 3D reconstruction*
 • Need to ensure 2D images are good quality
Networking Challenges

<table>
<thead>
<tr>
<th>Telemedicine application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video +Image coding issues</td>
</tr>
<tr>
<td>Statistical guarantees</td>
</tr>
<tr>
<td>MAC issues with long-distance wireless</td>
</tr>
<tr>
<td>Channel Characterization</td>
</tr>
</tbody>
</table>
Rest of the session

• Case study
 – “Aravind: Long-distance WiFi for telemedicine” – Sonesh Surana

• Technologies
 – “802.11: MAC challenges and System Design Issues” – Rabin Patra and Michael Rosenblum
 – “Performance analysis of CDMA 450 Backhaul Networks” – Sergiu Nedevschi
 – “Optimal Antenna Steering” – Omar Bakr

• Economic Aspects
 – “Economic Analysis of Long-haul Wireless Networks” – Shridhar Mubaraq Mishra
Long-distance wireless: an example

Closest city

Internet Cloud

POP

Directional links

POP

SubPOP (village)