Adaptive Beam Antennas

Omar Bakr
UC Berkeley/ Computer Science
Scenario

Can we these remote areas to the Internet in a cost effective way?
Why Adaptive Beam Forming

- Tower dominates cost (both fixed and ongoing)
- Considerably simplifies tower design, installation, maintenance
- Possibly eliminate the tower altogether (beyond the scope of this project)
- Challenges: optimal steering on both ends of a variable long distance link is very hard, especially when relying on cheap hardware
- Optimal system performance (high data-rate, low energy consumption) requires intelligent, adaptive software support
Antenna System Concept

- Low-cost adaptive beam steering antenna
 - For Wifi: 802.11b, maybe 802.11a/b/g/n
 - Where cost(antenna) < cost(access point)
 - Expect cost(antenna) < $50
- Software controllable antenna
 - Enable continuous low-frequency channel optimizations
 - Simplify deployment; increase performance and robustness
- Motivation and specialization from ICT4B context
 - 1-60km point-to-point links => 25-35dBi antenna gain
 - Standard 802.11a/b/g/n physical layer; higher maybe non-std
Four classes of antennas can be controlled electronically

- Electromechanical
- Phased array
- Active integrated
- Switched parasitic

Two of these are not relevant for us
System Parameters

- Configuration
 - B: half power beamwidth
 - A: dynamic azimuthal range
 +/-(A/2) right/left
 - a: azimuthal precision
 (A/a overlapping sectors each B degrees wide)
 - E: dynamic elevation range
 +/-(E/2) above/below
 - e: elevation precision
 (E/e overlapping elevation sectors each B degree tall)

- p: polarization
- f: frequency
Phase Arrays

Duplexers

LNA

PA

Controller

Receiver

Transmitter

Phasor Array
Switched Parasitic Antennas

- A single active antenna surrounded by a system of passive scatters with controllable reactive loads
- Varactor diodes can serve as the reactive loads in passive scatters; use reverse bias magnitudes to control diode depletion capacitances
- Control requires DACs for analog reverse bias and RF chokes to isolate the low-frequency control circuits from the diodes
- An Antenna Control Unit implements the beam forming algorithm that optimizes channel characteristics by adjusting the loads
Modeling

- Parametric design exploration
 - Element type (dipole, monopole, patch)
 - Geometries (#, placement, spacing, reflectors)
 - Reactive loads
- Design and structure optimization
 - Parametric directional and gain control
 - High gain and directional precision in narrow azimuth
 - Low gain and wide beam width in wide field of view
- RF and system metrics for evaluation
 - Directional control (angular precision) at maximum gain
 - Rate of adaptation – maximum rate, settling time
 - Chamber characterizations
Russia Prototype #1

current active plates

ground

antenna with active and only two passive vibrators

inductive shortening
Future Topics

- Multi-band antenna system for 802.11a/b/g
 - dual band elements; simultaneous send/receive on different bands

- Eliminate interference among co-located antennas
 - enable dense population of towers with antennas for different links or sectors

- 16 sector x 360 degree low-gain system for indoor wifi
 - can compact variant be demonstrated for localization applications

- Hybrid analog-digital phase shifting system with Golan
 - Use PCI express cards to demonstrate unique capabilities and value

- 2.4 to 3.5 Ghz up-down frequency shifting system
 - stake our claim to this currently unused bay area spectra

- System with two independently steerable beams?
- Extreme precision, 1-lambda azimuth control at 1km
- Adaptive antenna systems for WiMax terminals
Russia: People and Places

- Prof Alexey Umnov, Nizhny Novgorod State University,
- Maxim Suralev (NNSU and Intel Intern), and co.